Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.843
Filtrar
1.
Biophys Chem ; 308: 107217, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38490110

RESUMO

Hydrogenases are a diverse group of metalloenzymes that catalyze the conversion of H2 into protons and electrons and the reverse reaction. A subgroup is formed by the [FeFe]­hydrogenases, which are the most efficient enzymes of microbes for catalytic H2 conversion. We have determined the stability and activity of two [FeFe]­hydrogenases under high temperature and pressure conditions employing FTIR spectroscopy and the high-pressure stopped-flow methodology in combination with fast UV/Vis detection. Our data show high temperature stability and an increase in activity up to the unfolding temperatures of the enzymes. Remarkably, both enzymes reveal a very high pressure stability of their structure, even up to pressures of several kbars. Their high pressure-stability enables high enzymatic activity up to 2 kbar, which largely exceeds the pressure limit encountered by organisms in the deep sea and sub-seafloor on Earth.


Assuntos
Hidrogenase , Proteínas Ferro-Enxofre , Metaloproteínas , Hidrogenase/química , Hidrogenase/metabolismo , Proteínas Ferro-Enxofre/química , Prótons , Catálise , Hidrogênio/química , Hidrogênio/metabolismo
2.
Microbiol Spectr ; 12(4): e0338023, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38385688

RESUMO

Thermoanaerobacter kivui is the thermophilic acetogenic bacterium with the highest temperature optimum (66°C) and with high growth rates on hydrogen (H2) plus carbon dioxide (CO2). The bioenergetic model suggests that its redox and energy metabolism depends on energy-converting hydrogenases (Ech). Its genome encodes two Echs, Ech1 and Ech2, as sole coupling sites for energy conservation during growth on H2 + CO2. During growth on other substrates, its redox activity, the (proton-gradient-coupled) oxidation of H2 may be essential to provide reduced ferredoxin (Fd) to the cell. While Ech activity has been demonstrated biochemically, the physiological function of both Ech's is unclear. Toward that, we deleted the complete gene cluster encoding Ech2. Surprisingly, the ech2 mutant grew as fast as the wild type on sugar substrates and H2 + CO2. Hence, Ech1 may be the essential enzyme for energy conservation, and either Ech1 or another enzyme may substitute for H2-dependent Fd reduction during growth on sugar substrates, putatively the H2-dependent CO2 reductase (HDCR). Growth on pyruvate and CO, substrates that are oxidized by Fd-dependent enzymes, was significantly impaired, but to a different extent. While ∆ech2 grew well on pyruvate after four transfers, ∆ech2 did not adapt to CO. Cell suspensions of ∆ech2 converted pyruvate to acetate, but no acetate was produced from CO. We analyzed the genome of five T. kivui strains adapted to CO. Strikingly, all strains carried mutations in the hycB3 subunit of HDCR. These mutations are obviously essential for the growth on CO but may inhibit its ability to utilize Fd as substrate. IMPORTANCE: Acetogens thrive by converting H2+CO2 to acetate. Under environmental conditions, this allows for only very little energy to be conserved (∆G'<-20 kJ mol-1). CO2 serves as a terminal electron acceptor in the ancient Wood-Ljungdahl pathway (WLP). Since the WLP is ATP neutral, energy conservation during growth on H2 + CO2 is dependent on the redox metabolism. Two types of acetogens can be distinguished, Rnf- and Ech-type. The function of both membrane-bound enzyme complexes is twofold-energy conversion and redox balancing. Ech couples the Fd-dependent reduction of protons to H2 to the formation of a proton gradient in the thermophilic bacterium Thermoanaerobacter kivui. This bacterium may be utilized in gas fermentation at high temperatures, due to very high conversion rates and the availability of genetic tools. The physiological function of an Ech hydrogenase in T. kivui was studied to contribute an understanding of its energy and redox metabolism, a prerequisite for future industrial applications.


Assuntos
Hidrogenase , Thermoanaerobacter , Hidrogenase/metabolismo , Ferredoxinas/metabolismo , Prótons , Dióxido de Carbono/metabolismo , Acetatos/metabolismo , Bactérias/metabolismo , Açúcares , Piruvatos
3.
Sci Rep ; 14(1): 3026, 2024 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-38321125

RESUMO

[NiFe]-hydrogenases have a bimetallic NiFe(CN)2CO cofactor in their large, catalytic subunit. The 136 Da Fe(CN)2CO group of this cofactor is preassembled on a distinct HypC-HypD scaffold complex, but the intracellular source of the iron ion is unresolved. Native mass spectrometric analysis of HypCD complexes defined the [4Fe-4S] cluster associated with HypD and identified + 26 to 28 Da and + 136 Da modifications specifically associated with HypC. A HypCC2A variant without the essential conserved N-terminal cysteine residue dissociated from its complex with native HypD lacked all modifications. Native HypC dissociated from HypCD complexes isolated from Escherichia coli strains deleted for the iscS or iscU genes, encoding core components of the Isc iron-sulfur cluster biogenesis machinery, specifically lacked the + 136 Da modification, but this was retained on HypC from suf mutants. The presence or absence of the + 136 Da modification on the HypCD complex correlated with the hydrogenase enzyme activity profiles of the respective mutant strains. Notably, the [4Fe-4S] cluster on HypD was identified in all HypCD complexes analyzed. These results suggest that the iron of the Fe(CN)2CO group on HypCD derives from the Isc machinery, while either the Isc or the Suf machinery can deliver the [4Fe-4S] cluster to HypD.


Assuntos
Proteínas de Escherichia coli , Hidrogenase , Proteínas Ferro-Enxofre , Escherichia coli/genética , Ferro/metabolismo , Proteínas de Escherichia coli/metabolismo , Hidrogenase/metabolismo , Domínio Catalítico , Cisteína/química
4.
FEMS Microbiol Lett ; 3712024 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-38167703

RESUMO

Ralstonia eutropha is a facultative chemolithoautotrophic aerobic bacterium that grows using organic substrates or H2 and CO2. Hydrogenases (Hyds) are synthesized under lithoautotrophic, or energy-limited heterotrophic conditions and are used in enzyme fuel cells (EFC) as anodic catalysts. The effects of chemically synthesized gold nanoparticles (Au-NPs) on R. eutropha H16 growth, oxidation-reduction potential (ORP) kinetics, and H2-oxidizing Hyd activity were investigated in this study. Atomic force microscopy showed that thin, plate-shaped Au-NPs were in the nanoscale range with an average size of 5.68 nm. Compared with growth in medium without Au-NPs (control), the presence of Au-NPs stimulated growth, and resulted in a decrease in ORP to negative values. H2-oxidizing activity was not detected in the absence of Au-NPs, but activity was significantly induced (12 U/g CDW) after 24 h of growth with 18 ng/ml, increasing a further 4-fold after 72 h of growth. The results demonstrate that Au-NPs primarily influence the membrane-bound Hyd. In contrast to R. eutropha, Au-NPs had a negligible or negative effect on the growth, Hyd activity, and H2 production of Escherichia coli. The findings of this study offer new perspectives for the production of oxygen-tolerant Hyds and the development of EFCs.


Assuntos
Cupriavidus necator , Hidrogenase , Nanopartículas Metálicas , Processos Heterotróficos , Hidrogenase/metabolismo , Ouro , Oxirredução
5.
Enzyme Microb Technol ; 173: 110349, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37984199

RESUMO

Algae generate hydrogen from sunlight and water utilizing high-energy electrons generated during photosynthesis. The amount of hydrogen produced in heterologous expression of the wild-type hydrogenase is currently insufficient for industrial applications. One approach to improve hydrogen yields is through directed evolution of the DNA of the native hydrogenase. Here, we created 113 chimeric algal hydrogenase gene variants derived from combining segments of three parent hydrogenases, two from Chlamydomonas reinhardtii (CrHydA1 and CrHydA2) and one from Scenedesmus obliquus (HydA1). To generate chimeras, there were seven segments into which each of the parent hydrogenase genes was divided and recombined in a variety of combinations. The chimeric and parental hydrogenase sequences were cloned for heterologous expression in Escherichia coli, and 40 of the resultant enzymes expressed were assayed for H2 production. Chimeric clones that resulted in equal or greater production obtained with the cloned CrHydA1 parent hydrogenase were those comprised of CrHydA1 sequence in segments #1, 2, 3, and/or 4. These best-performing chimeras all contained one common region, segment #2, the part of the sequence known to contain important amino acids involved in proton transfer or hydrogen cluster coordination. The amino acid sequence distances among all chimeric clones to that of the CrHydA1 parent were determined, and the relationship between sequence distances and experimentally-derived H2 production was evaluated. An additional model determined the correlation between electrostatic potential energy surface area ratios and H2 production. The model yielded several algal mutants with predicted hydrogen productions in a range of two to three times that of the wild-type hydrogenase. The mutant data and the model can now be used to predict which specific mutant sequences may result in even higher hydrogen yields. Overall, results provide more precise details in planning future directed evolution to functionally improve algal hydrogenases.


Assuntos
Hidrogenase , Hidrogenase/genética , Hidrogenase/química , Hidrogenase/metabolismo , Sequência de Aminoácidos , Fotossíntese , Hidrogênio/metabolismo
6.
J Exp Zool A Ecol Integr Physiol ; 341(1): 31-40, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37861072

RESUMO

Cadmium is a male reproductive toxicant that interacts with a variety of pathogenetic mechanisms. However, the effect of cadmium on the regulatory mechanism of the steroidogenic pathway of Leydig cells during spermatogenesis is still ambiguous. Light microscopy, Western blot, immunohistochemistry, immunofluorescence, and quantitative polymerase chain reaction were performed to study the regulatory mechanism of the steroidogenic pathway of Leydig cells during spermatogenesis. The results indicated that in the control group, Leydig cells showed dynamic immunoreactivity and immunosignaling action with a strong positive significant secretion of 3ß-hydroxysteroid hydrogenase (3ß-HSD) in the interstitial compartment of the testis. Leydig cells showed a high active regulator mechanism of the steroidogenic pathway with increased the proteins and genes expression level of steroidogenic acute regulatory protein (STAR), cytochrome P450 cholesterol (CYP11A1), cytochrome P450 cholesterol (CYP17A1), 3ß-hydroxysteroid hydrogenase (3ß-HSD) 17ß-hydroxysteroid hydrogenase (17ß-HSD), and androgen receptor (AR) that maintained the healthy and vigorous progressive motile spermatozoa. However, on treatment with cadmium, Leydig cells were irregularly dispersed in the interstitial compartment of the testis. Leydig cells showed reduced immunoreactivity and immunosignaling of 3ß-HSD protein. Meanwhile, cadmium impaired the regulatory mechanism of the steroidogenic process of the Leydig cells with reduced protein and gene expression levels of STAR, CYP11A1, CYP17A1, 3ß-HSD, 17ß-HSD, and AR in the testis. Additionally, treatment with cadmium impaired the serum LH, FSH, and testosterone levels in blood as compared to control. This study explores the hazardous effect of cadmium on the regulatory mechanism of the steroidogenic pathway of Leydig cells during spermatogenesis.


Assuntos
Hidrogenase , Células Intersticiais do Testículo , Masculino , Animais , Células Intersticiais do Testículo/química , Células Intersticiais do Testículo/metabolismo , Cádmio/metabolismo , Testosterona , Enzima de Clivagem da Cadeia Lateral do Colesterol/genética , Enzima de Clivagem da Cadeia Lateral do Colesterol/metabolismo , Hidroxiesteroides/metabolismo , Hidroxiesteroides/farmacologia , Hidrogenase/metabolismo , Hidrogenase/farmacologia , Espermatogênese , Colesterol/metabolismo , Colesterol/farmacologia
7.
Angew Chem Int Ed Engl ; 63(6): e202316478, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38100251

RESUMO

[Fe]-hydrogenase harbors the iron-guanylylpyridinol (FeGP) cofactor, in which the Fe(II) complex contains acyl-carbon, pyridinol-nitrogen, cysteine-thiolate and two CO as ligands. Irradiation with UV-A/blue light decomposes the FeGP cofactor to a 6-carboxymethyl-4-guanylyl-2-pyridone (GP) and other components. Previous in vitro biosynthesis experiments indicated that the acyl- and CO-ligands in the FeGP cofactor can scramble, but whether scrambling occurred during biosynthesis or photolysis was unclear. Here, we demonstrate that the [18 O1 -carboxy]-group of GP is incorporated into the FeGP cofactor by in vitro biosynthesis. MS/MS analysis of the 18 O-labeled FeGP cofactor revealed that the produced [18 O1 ]-acyl group is not exchanged with a CO ligand of the cofactor, indicating that the acyl and CO ligands are scrambled during photolysis rather than biosynthesis, which ruled out any biosynthesis mechanisms allowing acyl/CO ligands scrambling. Time-resolved infrared spectroscopy indicated that an acyl-Fe(CO)3 intermediate is formed during photolysis, in which scrambling of the CO and acyl ligands can occur. This finding also suggests that the light-excited FeGP cofactor has a higher affinity for external CO. These results contribute to our understanding of the biosynthesis and photosensitive properties of this unique H2 -activating natural complex.


Assuntos
Hidrogenase , Proteínas Ferro-Enxofre , Hidrogenase/metabolismo , Ligantes , Espectrometria de Massas em Tandem , Fotólise , Carbono , Proteínas Ferro-Enxofre/química
8.
FEMS Microbiol Ecol ; 99(12)2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-38040657

RESUMO

High-affinity H2-oxidizing bacteria (HA-HOB) thriving in soil are responsible for the most important sink of atmospheric H2. Their activity increases with soil organic carbon content, but the incidence of different carbohydrate fractions on the process has received little attention. Here we tested the hypothesis that carbon amendments impact HA-HOB activity and diversity differentially depending on their recalcitrance and their concentration. Carbon sources (sucrose, starch, cellulose) and application doses (0, 0.1, 1, 3, 5% Ceq soildw-1) were manipulated in soil microcosms. Only 0.1% Ceq soildw-1 cellulose treatment stimulated the HA-HOB activity. Sucrose amendments induced the most significant changes, with an abatement of 50% activity at 1% Ceq soildw-1. This was accompanied with a loss of bacterial and fungal alpha diversity and a reduction of high-affinity group 1 h/5 [NiFe]-hydrogenase gene (hhyL) abundance. A quantitative classification framework was elaborated to assign carbon preference traits to 16S rRNA gene, ITS and hhyL genotypes. The response was uneven at the taxonomic level, making carbon preference a difficult trait to predict. Overall, the results suggest that HA-HOB activity is more susceptible to be stimulated by low doses of recalcitrant carbon, while labile carbon-rich environment is an unfavorable niche for HA-HOB, inducing catabolic repression of hydrogenase.


Assuntos
Hidrogenase , Microbiota , Carbono/metabolismo , Hidrogenase/genética , Hidrogenase/metabolismo , Oxirredução , Solo , RNA Ribossômico 16S/genética , Microbiologia do Solo , Hidrogênio/metabolismo , Bactérias , Celulose/metabolismo , Sacarose/metabolismo
9.
Angew Chem Int Ed Engl ; 62(51): e202314819, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-37962296

RESUMO

[FeFe]-hydrogenases efficiently catalyze the reversible oxidation of molecular hydrogen. Their prowess stems from the intricate H-cluster, combining a [Fe4 S4 ] center with a binuclear iron center ([2Fe]H ). In the latter, each iron atom is coordinated by a CO and CN ligand, connected by a CO and an azadithiolate ligand. The synthesis of this active site involves a unique multiprotein assembly, featuring radical SAM proteins HydG and HydE. HydG initiates the transformation of L-tyrosine into cyanide and carbon monoxide to generate complex B, which is subsequently transferred to HydE to continue the biosynthesis of the [2Fe]H -subcluster. Due to its instability, complex B isolation for structural or spectroscopic characterization has been elusive thus far. Nevertheless, the use of a biomimetic analogue of complex B allowed circumvention of the need for the HydG protein during in vitro functional investigations, implying a similar structure for complex B. Herein, we used the HydE protein as a nanocage to encapsulate and stabilize the complex B product generated by HydG. Using X-ray crystallography, we successfully determined its structure at 1.3 Šresolution. Furthermore, we demonstrated that complex B is directly transferred from HydG to HydE, thus not being released into the solution post-synthesis, highlighting a transient interaction between the two proteins.


Assuntos
Hidrogenase , Proteínas Ferro-Enxofre , Hidrogenase/metabolismo , Ligantes , Espectroscopia de Ressonância de Spin Eletrônica , Proteínas/metabolismo , Ferro/química , Compostos Ferrosos/metabolismo , Proteínas Ferro-Enxofre/química
10.
J Phys Chem B ; 127(43): 9295-9302, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37861415

RESUMO

[FeFe]-hydrogenases employ a catalytic H-cluster, consisting of a [4Fe-4S]H cluster linked to a [2Fe]H subcluster with CO, CN- ligands, and an azadithiolate bridge, which mediates the rapid redox interconversion of H+ and H2. In the biosynthesis of this H-cluster active site, the radical S-adenosyl-l-methionine (radical SAM, RS) enzyme HydG plays the crucial role of generating an organometallic [Fe(II)(CN)(CO)2(cysteinate)]- product that is en route to forming the H-cluster. Here, we report direct observation of this diamagnetic organometallic Fe(II) complex through Mössbauer spectroscopy, revealing an isomer shift of δ = 0.10 mm s-1 and quadrupole splitting of ΔEQ = 0.66 mm s-1. These Mössbauer values are a change from the starting values of δ = 1.15 mm s-1 and ΔEQ = 3.23 mm s-1 for the ferrous "dangler" Fe in HydG. These values of the observed product complex B are in good agreement with Mössbauer parameters for the low-spin Fe2+ ions in synthetic analogues, such as 57Fe Syn-B, which we report here. These results highlight the essential role that HydG plays in converting a resting-state high-spin Fe(II) to a low-spin organometallic Fe(II) product that can be transferred to the downstream maturase enzymes.


Assuntos
Hidrogenase , Proteínas Ferro-Enxofre , Espectroscopia de Mossbauer , Metionina , Catálise , Oxirredução , Hidrogenase/metabolismo , Compostos Ferrosos , Proteínas Ferro-Enxofre/química , Espectroscopia de Ressonância de Spin Eletrônica
11.
Bioresour Technol ; 390: 129871, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37838018

RESUMO

In this consortium, DSM 1313 was responsible for degrading lignocellulose by cellulosome, while the highly efficient hydrogen-producing bacterium MJ1 consumed the sugar produced by DSM 1313 to grow and produce more hydrogen. The results showed that the maximum hydrogen production of 259.57 mL/g substrate was obtained at the inoculation ratio (OD600) of 2:1 (DSM 1313:MJ1) and substrate concentration of 10 g/L, 70.84 % higher than pure culture. Furthermore, MJ1 dominated the co-culture system by using various sugars resulting from the biodegradation of substrate, thereby relieving the inhibition of sugar on DSM 1313 and leading to more hydrogen production. In the co-culture system, the value of extracellular oxidation-reduction potential and the ratio of NAD+/NADH was lower than that of pure culture. Additionally, at the gene level, [NiFe]-hydrogenase and [FeFe]-hydrogenase related enzymes were significantly up-regulated, leading to a two-fold increase in hydrogenase activity of co-culture compared with pure culture.


Assuntos
Clostridium thermocellum , Hidrogenase , Hidrogenase/metabolismo , Clostridium/metabolismo , Clostridium thermocellum/metabolismo , Açúcares , Hidrogênio/metabolismo
12.
Chembiochem ; 24(20): e202300330, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37671838

RESUMO

[Fe]-hydrogenase catalyzes the heterolytic cleavage of H2 and reversible hydride transfer to methenyl-tetrahydromethanopterin. The iron-guanylylpyridinol (FeGP) cofactor is the prosthetic group of this enzyme, in which mononuclear Fe(II) is ligated with a pyridinol and two CO ligands. The pyridinol ligand fixes the iron by an acyl carbon and a pyridinol nitrogen. Biosynthetic proteins for this cofactor are encoded in the hmd co-occurring (hcg) genes. The function of HcgB, HcgC, HcgD, HcgE, and HcgF was studied by using structure-to-function analysis, which is based on the crystal structure of the proteins and subsequent enzyme assays. Recently, we reported the catalytic properties of HcgA and HcgG, novel radical S-adenosyl methionine enzymes, by using an in vitro biosynthesis assay. Here, we review the properties of [Fe]-hydrogenase and the FeGP cofactor, and the biosynthesis of the FeGP cofactor. Finally, we discuss the expected engineering of [Fe]-hydrogenase and the FeGP cofactor.


Assuntos
Hidrogenase , Proteínas Ferro-Enxofre , Hidrogenase/metabolismo , Carbono/metabolismo , Proteínas Ferro-Enxofre/química , Ferro/química
13.
Biochem Soc Trans ; 51(5): 1921-1933, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37743798

RESUMO

The splitting of hydrogen (H2) is an energy-yielding process, which is important for both biological systems and as a means of providing green energy. In biology, this reaction is mediated by enzymes called hydrogenases, which utilise complex nickel and iron cofactors to split H2 and transfer the resulting electrons to an electron-acceptor. These [NiFe]-hydrogenases have received considerable attention as catalysts in fuel cells, which utilise H2 to produce electrical current. [NiFe]-hydrogenases are a promising alternative to the platinum-based catalysts that currently predominate in fuel cells due to the abundance of nickel and iron, and the resistance of some family members to inhibition by gases, including carbon monoxide, which rapidly poison platinum-based catalysts. However, the majority of characterised [NiFe]-hydrogenases are inhibited by oxygen (O2), limiting their activity and stability. We recently reported the isolation and characterisation of the [NiFe]-hydrogenase Huc from Mycobacterium smegmatis, which is insensitive to inhibition by O2 and has an extremely high affinity, making it capable of oxidising H2 in air to below atmospheric concentrations. These properties make Huc a promising candidate for the development of enzyme-based fuel cells (EBFCs), which utilise H2 at low concentrations and in impure gas mixtures. In this review, we aim to provide context for the use of Huc for this purpose by discussing the advantages of [NiFe]-hydrogenases as catalysts and their deployment in fuel cells. We also address the challenges associated with using [NiFe]-hydrogenases for this purpose, and how these might be overcome to develop EBFCs that can be deployed at scale.


Assuntos
Hidrogenase , Níquel , Oxigênio , Hidrogenase/metabolismo , Oxirredução , Ferro , Hidrogênio
14.
Microb Cell Fact ; 22(1): 134, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37479997

RESUMO

BACKGROUND: Hydrogenases (H2ases) are metalloenzymes capable of the reversible conversion of protons and electrons to molecular hydrogen. Exploiting the unique enzymatic activity of H2ases can lead to advancements in the process of biohydrogen evolution and green energy production. RESULTS: Here we created of a functional, optimized operon for rapid and robust production of recombinant [NiFe] Desulfomicrobium baculatum hydrogenase (Dmb H2ase). The conversion of the [NiFeSe] Dmb H2ase to [NiFe] type was performed on genetic level by site-directed mutagenesis. The native dmb operon includes two structural H2ase genes, coding for large and small subunits, and an additional gene, encoding a specific maturase (protease) that is essential for the proper maturation of the enzyme. Dmb, like all H2ases, needs intricate bio-production machinery to incorporate its crucial inorganic ligands and cofactors. Strictly anaerobic, sulfate reducer D. baculatum bacteria are distinct, in terms of their biology, from E. coli. Thus, we introduced a series of alterations within the native dmb genes. As a result, more than 100 elements, further compiled into 32 operon variants, were constructed. The initial requirement for a specific maturase was omitted by the artificial truncation of the large Dmb subunit. The assembly of the produced H2ase subunit variants was investigated both, in vitro and in vivo. This approach resulted in 4 recombinant [NiFe] Dmb enzyme variants, capable of H2 evolution. The aim of this study was to overcome the gene expression, protein biosynthesis, maturation and ligand loading bottlenecks for the easy, fast, and cost-effective delivery of recombinant [NiFe] H2ase, using a commonly available E. coli strains. CONCLUSION: The optimized genetic constructs together with the developed growth and purification procedures appear to be a promising platform for further studies toward fully-active and O2 tolerant, recombinant [NiFeSe] Dmb H2ase, resembling the native Dmb enzyme. It could likely be achieved by selective cysteine to selenocysteine substitution within the active site of the [NiFe] Dmb variant.


Assuntos
Escherichia coli , Hidrogenase , Domínio Catalítico , Escherichia coli/metabolismo , Hidrogenase/genética , Hidrogenase/metabolismo , Endopeptidases/metabolismo
15.
Chembiochem ; 24(18): e202300250, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37391388

RESUMO

'Bacterial-type' ferredoxins host a cubane [4Fe4S]2+/+ cluster that enables these proteins to mediate electron transfer and facilitate a broad range of biological processes. Peptide maquettes based on the conserved cluster-forming motif have previously been reported and used to model the ferredoxins. Herein we explore the integration of a [4Fe4S]-peptide maquette into a H2 -powered electron transport chain. While routinely formed under anaerobic conditions, we illustrate by electron paramagnetic resonance (EPR) analysis that these maquettes can be reconstituted under aerobic conditions by using photoactivated NADH to reduce the cluster at 240 K. Attempts to tune the redox properties of the iron-sulfur cluster by introducing an Fe-coordinating selenocysteine residue were also explored. To demonstrate the integration of these artificial metalloproteins into a semi-synthetic electron transport chain, we utilize a ferredoxin-inspired [4Fe4S]-peptide maquette as the redox partner in the hydrogenase-mediated oxidation of H2 .


Assuntos
Hidrogenase , Proteínas Ferro-Enxofre , Ferredoxinas/metabolismo , Proteínas Ferro-Enxofre/química , Hidrogenase/metabolismo , Oxirredução , Peptídeos/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica
16.
Microbiome ; 11(1): 133, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37322527

RESUMO

BACKGROUND: Hydrogen gas (H2) is a common product of carbohydrate fermentation in the human gut microbiome and its accumulation can modulate fermentation. Concentrations of colonic H2 vary between individuals, raising the possibility that H2 concentration may be an important factor differentiating individual microbiomes and their metabolites. Butyrate-producing bacteria (butyrogens) in the human gut usually produce some combination of butyrate, lactate, formate, acetate, and H2 in branched fermentation pathways to manage reducing power generated during the oxidation of glucose to acetate and carbon dioxide. We predicted that a high concentration of intestinal H2 would favor the production of butyrate, lactate, and formate by the butyrogens at the expense of acetate, H2, and CO2. Regulation of butyrate production in the human gut is of particular interest due to its role as a mediator of colonic health through anti-inflammatory and anti-carcinogenic properties. RESULTS: For butyrogens that contained a hydrogenase, growth under a high H2 atmosphere or in the presence of the hydrogenase inhibitor CO stimulated production of organic fermentation products that accommodate reducing power generated during glycolysis, specifically butyrate, lactate, and formate. Also as expected, production of fermentation products in cultures of Faecalibacterium prausnitzii strain A2-165, which does not contain a hydrogenase, was unaffected by H2 or CO. In a synthetic gut microbial community, addition of the H2-consuming human gut methanogen Methanobrevibacter smithii decreased butyrate production alongside H2 concentration. Consistent with this observation, M. smithii metabolic activity in a large human cohort was associated with decreased fecal butyrate, but only during consumption of a resistant starch dietary supplement, suggesting the effect may be most prominent when H2 production in the gut is especially high. Addition of M. smithii to the synthetic communities also facilitated the growth of E. rectale, resulting in decreased relative competitive fitness of F. prausnitzii. CONCLUSIONS: H2 is a regulator of fermentation in the human gut microbiome. In particular, high H2 concentration stimulates production of the anti-inflammatory metabolite butyrate. By consuming H2, gut methanogenesis can decrease butyrate production. These shifts in butyrate production may also impact the competitive fitness of butyrate producers in the gut microbiome. Video Abstract.


Assuntos
Microbioma Gastrointestinal , Hidrogenase , Microbiota , Humanos , Butiratos/metabolismo , Fermentação , Hidrogenase/metabolismo , Acetatos/metabolismo , Ácido Láctico/metabolismo , Formiatos
17.
Chem Commun (Camb) ; 59(58): 8929-8932, 2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37376915

RESUMO

Here we describe maturation of the [FeFe]-hydrogenase from its [4Fe-4S]-bound precursor state by using the synthetic complex [Fe2(µ-SH)2(CN)2(CO)4]2- together with HydF and components of the glycine cleavage system, but in the absence of the maturases HydE and HydG. This semisynthetic and fully-defined maturation provides new insights into the nature of H-cluster biosynthesis.


Assuntos
Hidrogenase , Proteínas Ferro-Enxofre , Hidrogenase/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Guanosina Trifosfato
18.
Helicobacter ; 28(5): e13001, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37334992

RESUMO

BACKGROUND: It has been documented that Helicobacter hepaticus produces a nickel-containing hydrogen-oxidizing hydrogenase enzyme, which is necessary for hydrogen-supported amino acid uptake. Although H. hepaticus infection has been shown to promote liver inflammation and fibrosis in BALB/c mice, the impact of hydrogenase on the progression of liver fibrosis induced by H. hepaticus has not been explored. MATERIALS AND METHODS: BALB/c mice were inoculated with hydrogenase mutant (ΔHyaB) or wild type (WT) H. hepaticus 3B1 for 12 and 24 weeks. H. hepaticus colonization, hepatic histopathology, serum biochemistry, expression of inflammatory cytokines, and oxidative stress signaling pathways were detected. RESULTS: We found that ΔHyaB had no influence on the colonization of H. hepaticus in the liver of mice at 12 and 24 weeks post infection (WPI). However, mice infected by ΔHyaB strains developed significantly alleviated liver inflammation and fibrosis compared with WT infection. Moreover, ΔHyaB infection remarkably increased the expression of hepatic GSH, SOD, and GSH-Px, and decreased the liver levels of MDA, ALT, and AST compared to WT H. hepaticus infected group from 12 to 24 WPI. Furthermore, mRNA levels of Il-6, Tnf-α, iNos, Hmox-1, and α-SMA were significantly decreased with an increase of Nfe2l2 in the liver of mice infected by ΔHyaB strains. In addition, ΔHyaB H. hepaticus restored the activation of the Nrf2/HO-1 signaling pathway, which is inhibited by H. hepaticus infection. CONCLUSIONS: These data demonstrated that H. hepaticus hydrogenase promoted liver inflammation and fibrosis development mediated by oxidative stress in male BALB/c mice.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Hidrogenase , Masculino , Animais , Camundongos , Helicobacter hepaticus/genética , Hidrogenase/genética , Hidrogenase/metabolismo , Camundongos Endogâmicos BALB C , Infecções por Helicobacter/patologia , Helicobacter pylori/metabolismo , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Fígado/patologia , Fibrose , Estresse Oxidativo , Hidrogênio/metabolismo
19.
Appl Microbiol Biotechnol ; 107(14): 4683-4696, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37289241

RESUMO

Side streams of the dairy industry are a suitable nutrient source for cultivating microorganisms, producing enzymes, and high-value chemical compounds. The heterotrophic Escherichia coli and chemolithoautotroph Ralstonia eutropha are of major biotechnological interest. R. eutropha is a model organism for producing O2-tolerant [NiFe]-hydrogenases (Hyds) (biocatalysts), and E. coli has found widespread use as an expression platform for producing recombinant proteins, molecular hydrogen (H2), and other valuable products. Aiming at developing suitable cultivation media from side streams of the dairy industry, the pre-treatment (filtration, dilution, and pH adjustment) of cheese (sweet) whey (SW) and curd (acid) whey (AW), with and without the use of ß-glucosidase, has been performed. Growth parameters (oxidation-reduction potential (ORP), pH changes, specific growth rate, biomass formation) of E. coli BW25113 and R. eutropha H16 type strains were monitored during cultivation on filtered and non-filtered SW and AW at 37 °C, pH 7.5 and 30 °C, pH 7.0, respectively. Along with microbial growth, measurements of pH and ORP indicated good fermentative growth. Compared to growth on fructose-nitrogen minimal salt medium (control), a maximum cell yield (OD600 4.0) and H2-oxidizing Hyd activity were achieved in the stationary growth phase for R. eutropha. Hyd-3-dependent H2 production by E. coli utilizing whey as a growth substrate was demonstrated. Moreover, good biomass production and prolonged H2 yields of ~ 5 mmol/L and cumulative H2 ~ 94 mL g/L dry whey (DW) (ß-glucosidase-treated) were observed during the cultivation of the engineered E. coli strain. These results open new avenues for effective whey treatment using thermostable ß-glucosidase and confirm whey as an economically viable commodity for biomass and biocatalyst production. KEY POINTS: • Archaeal thermostable ß-glucosidase isolated from the metagenome of a hydrothermal spring was used for lactose hydrolysis in whey. • Hydrogenase enzyme activity was induced during the growth of Ralstonia eutropha H16 on whey. • Enhanced biomass and H2 production was shown in a genetically modified strain of Escherichia coli.


Assuntos
Celulases , Cupriavidus necator , Hidrogenase , Soro do Leite/metabolismo , Escherichia coli/metabolismo , Hidrogenase/genética , Hidrogenase/metabolismo , Biomassa , Proteínas do Soro do Leite/metabolismo , Hidrogênio/metabolismo , Celulases/metabolismo
20.
Trends Biochem Sci ; 48(8): 659-661, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37246022

RESUMO

Despite its extreme scarcity, atmospheric H2 serves as an energy source for some prokaryotes. Recently, Grinter, Kropp, et al. reported the structural, biochemical, electrochemical, and spectroscopic elucidation of an underlying H2 catalyst, a [NiFe]-hydrogenase, which, owing to its extremely high affinity, facilitates the extraction of energy from ambient air.


Assuntos
Hidrogênio , Hidrogenase , Hidrogênio/química , Hidrogenase/metabolismo , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...